We help you find the perfect fit.

Swiss Ai Research Overview Platform

28 Research Topics Taxonomy
Reset all filters
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Filter
Reset all filters
Select all Unselect all
Close Show projects Back
Show all filters
71 Application Fields Taxonomy
Reset all filters
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Filter
Reset all filters
Select all Unselect all
Close Show projects Back
Show all filters
34 Institutions Taxonomy
Reset all filters
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Select all Unselect all
Close
Filter
Reset all filters
Select all Unselect all
Close Show projects Back
Show all filters
Analysis and implementation of low-rank tensor algorithms

Lay summary

 L'objet de ce project est l'analyse numérique et la mise en oeuvre efficace d'algorithmes qui utilisent des techniques de tenseurs de faible rang, appliquées à trois types de problèmes :

  1. des intégrateurs numériques pour l'intégration des EDO à tenseur temporel réversible avec troncature de rang;
  2. paralléliser les algorithmes tenseurs de faible rang pour l'optimisation et l'intégration temporelle; et
  3. appliquer les techniques des tenseurs dans l'apprentissage machine pour la régression et la décision.

Abstract

Numerical methods using low-rank tensor techniques have seen great success in, for example, theoretical physics for the simulation of spin systems, in scientific computing for high-dimensional PDEs, and in signal processing for independent component analysis. The aim of this proposal is to (A) propose numerical integrators for integration of time-reversible tensor ODEs with rank truncation, (B) parallelize low-rank tensor algorithms for optimization and time integration, and (C) apply tensor techniques for regression and decision in machine learning.

Last updated:04.06.2022